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Tóm�tắt:�Bài�toán�tối�ưu�hóa�quỹ�đạo�an�toàn�cho�UAV�trong�môi�trường�phức�tạp,�

nơi�tồn�tại�các�chướng�ngại�và�các�ràng�buộc�an�toàn.�Mục�tiêu�then�chốt�là�xác�định�quỹ�

đạo�tối�ưu,�tối�thiểu�hóa�thời�gian�bay,�năng�lượng�tiêu�thụ�hoặc�độ�dài�đường�đi,�đồng�

thời�đảm�bảo�UAV�di�chuyển�một�cách�an�toàn�từ�điểm�xuất�phát�đến�điểm�đích,�tránh�mọi�

va�chạm�và�tuân�thủ�nghiêm�ngặt�các�giới�hạn�về�vận�tốc,�gia�tốc,�độ�cao.�Ứng�dụng�ba�

phương�pháp�tối�ưu�hóa�dựa�trên�quần�thể:�Thuật�toán�tối�ưu�bầy�đàn�(PSO),�thuật�toán�di�

truyền�(GA),�và�một�thuật�toán�lai�PSO�và�GA�(PSO-GA-UAV).�Điểm�mới�của�nghiên�cứu�

là�việc�đề�xuất�và�phát�triển�thuật�toán�lai�PSO�-�GA�-�UAV,�kỳ�vọng�tận�dụng�khả�năng�

khám�phá�không�gian�rộng�lớn�của�GA�và�tốc�độ�hội�tụ�nhanh�chóng�của�PSO�để�đạt�được�

hiệu�suất�tối�ưu�hóa�vượt�trội.�Cuối�cùng,�hiệu�suất�của�cả�ba�thuật�toán�sẽ�được�đánh�giá�

và�so�sánh�dựa�trên�quỹ�đạo,�khả�năng�đáp�ứng�ràng�buộc,�tốc�độ�hội�tụ�và�tính�ổn�định,�

hứa�hẹn�mang�lại�một�phương�pháp�hiệu�quả�cho�việc�lập�quỹ�đạo�an�toàn�và�tối�ưu�cho�

UAV�trong�nhiều�ứng�dụng�thực�tế.

Từ�khóa:�UAV,�tối�ưu�hóa,�thuật�toán�bầy�đàn�POS,�thuật�toán�di�truyền�GA,�thuật�toán�lai�kết�

hợp�POS�và�GA

1�Trường�Đại�học�Mở�Hà�Nội

I.�Đặt�vấn�đề

Trong� những� năm� gần� đây,� sự�

phát� triển� nhanh� chóng� của� công� nghệ�

Internet� of� Things� (IoT)� và�Unmanned�

Aerial� Vehicle� (UAV)� đã� tạo� ra� nhiều�

cơ�hội�ứng�dụng�mới�trong�các�lĩnh�vực�

như�nông�nghiệp�thông�minh,�cứu�hộ,�và�

giao�thông�vận�tải.�Các�UAV�không�chỉ�

là� công� cụ� thu� thập� dữ� liệu�mà� còn� có�

khả�năng� thực�hiện�các�nhiệm�vụ� từ� tự�

động�hóa�đến�tính�toán�phức�tạp.�Do�đó,�

tối�ưu�hóa�quỹ�đạo�cho�UAV�trong�môi�

trường� thực� tế,� nơi� tồn� tại� các� chướng�

ngại�vật�và�ràng�buộc�an�toàn�đa�dạng,�

là� một� thách� thức.� Mục� tiêu� là� tìm� ra�
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quỹ�đạo�tối�ưu,�giảm�thiểu�thời�gian�bay,�

năng�lượng�hoặc�độ�dài�đường�đi,�đồng�

thời� đảm� bảo� UAV� di� chuyển� an� toàn,�

tránh�va�chạm�và�tuân�thủ�nghiêm�ngặt�

các�giới�hạn�về�vận�tốc,�gia�tốc,�độ�cao.�

Nghiên�cứu�này�tập�trung�vào�việc�ứng�

dụng�ba�thuật�toán�tối�ưu�dựa�trên�thuật�

toán� tối� ưu� hóa� bầy� đàn� (PSO),� thuật�

toán� di� truyền� (GA)� và� thuật� toán� lai�

PSO-GA-UAV.�Từ�đó�so�sánh�hiệu�suất�

của� các� thuật� toán� này� trong� việc� tìm�

kiếm� quỹ� đạo� an� toàn� và� tối� ưu,� đồng�

thời�đánh�giá�khả�năng�đáp�ứng�các�ràng�

buộc�và�tốc�độ�hội�tụ�của�chúng,�nhằm�

cung�cấp�một�phương�pháp�hiệu�quả�cho�

việc�lập�quỹ�đạo�UAV�trong�thực�tế.

II.�Cơ�sở�lý�thuyết

Tối� ưu� hóa� quỹ� đạo� an� toàn� cho�

UAV� trong�môi� trường�phức� tạp� là�một�

bài� toán� đa� mục� tiêu� thách� thức.� Các�

thuật� toán� tối�ưu�hóa�quần� thể,�đặc�biệt�

là�thuật�toán�bầy�đàn�(PSO),�thuật�toán�di�

truyền� (GA)�và� thuật� toán� lai� PSO-GA,�

được�ứng�dụng�để�tìm�kiếm�giải�pháp�tối�

ưu�trong�không�gian�tìm�kiếm�đa�chiều.�

PSO�nổi� bật� với� ưu� điểm�dễ� triển� khai,�

hội�tụ�nhanh�và�ít�yêu�cầu�thông�số�đầu�

vào,� mô� phỏng� tìm� kiếm� trong� không�

gian� nhiều� chiều� (Marini� &� Walczak,�

2015).�GA�dựa�trên�nguyên�lý�tiến�hóa�tự�

nhiên�của�Charles�Darwin,�mô�phỏng�quá�

trình�chọn�lọc�tự�nhiên�thông�qua�các�cơ�

chế�chọn�lọc,�lai�ghép�và�đột�biến�để�tìm�

kiếm�giải�pháp�khả�thi�(Lambora,�Gupta�

&� Chopra,� 2019;� Mirjalili� &� Mirjalili,�

2019;�Alhijawi�&�Awajan,�2024).�Thuật�

toán�lai�PSO-GA�được�đề�xuất�nhằm�cải�

thiện�hiệu� suất�tìm�kiếm�quỹ�đạo�tối�ưu�

bằng� cách� kết� hợp� khả� năng� khám� phá�

không�gian� rộng�lớn�của�GA�với� tốc�độ�

hội�tụ�nhanh�của�PSO.

III.�Phương�pháp�nghiên�cứu

3.1.�Xây�dựng�bài�toán

Xây�dựng�một�kịch�bản�hoạt�động�

hiệu� quả� cho� hai�UAV�nhằm� thực� hiện�

nhiệm� vụ� trong� một� môi� trường� phức�

tạp.�Các�UAV�này�được�thiết�kế�để�đồng�

thời�di�chuyển�qua�không�gian,�chủ�động�

tránh�các�chướng�ngại�vật�tĩnh�và�động,�

tránh��va�chạm�giữa�các�UAV�với�nhau.�

UAV�sẽ�xuất�phát�từ�vị�trí�xác�định�đến�

một�vị� trí�đích�cho�trước.�UAV�bắt�đầu�

hành�trình�với�vận�tốc�bằng�không,�sau�

đó�vận�tốc�của�UAV�sẽ�được�điều�chỉnh�

một� cách� linh� hoạt� theo� thời� gian� dựa�

trên� các� thuật� toán� điều�khiển� được� áp�

dụng.�Mục�tiêu�chính�là�tìm�ra�một�biểu�

đồ�vận�tốc�tối�ưu�theo�thời�gian,�sao�cho�

UAV�có�thể�đến�điểm�đích�một�cách�hiệu�

quả,�tối�thiểu�hóa�thời�gian�bay,�tiêu�thụ�

năng� lượng,� hoặc� đáp� ứng� các� tiêu� chí�

hiệu�suất�khác.

Bảng�1.�Thông�số�hệ�thống

Tham�số Giá�trị
Số�lượng�UAV 2
Kích�thước�bản�đồ 100x100�đơn�vị
Số�lượng�chướng�ngại�vật 10
Chướng�ngại�vật�cố�định 1�(Tọa�độ�(50,�50))
Chướng�ngại�vật�ngẫu�nhiên 9�(Bán�kính�ngẫu�nhiên)
Điểm�xuất�phát�UAV�1�(START) (5,�0)
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Tham�số Giá�trị
Điểm�xuất�phát�UAV�2�(START2) (0,�5)
Điểm�đích�đến�UAV�1�(GOAL) (99,�94)
Điểm�đích�đến�UAV�2�(GOAL2) (94,�99)
Số�lượng�điểm�trung�gian/UAV 5
Tổng�số�điểm�quỹ�đạo/UAV 7

Bài� toán� đặt� ra� là� tìm� kiếm� đồng�

thời�hai�quỹ�đạo�tối�ưu�cho�hai�UAVs,�ký�

hiệu�UAV
�
�và�UAV

�
,�hoạt�động�trong�một�

không�gian�làm�việc�hai�chiều���⊂�����

� ������ ����� ���� �ẽ� chứa� tập� hợp� các�

chướng�ngại�vật� tĩnh��� � �O
�
��O

�
�� �����

O
�
�.�UAV

�
�cần�di�chuyển�từ�điểm�xuất�phát�

S
�
�∈��

f
�
ree
�đến�điểm�đích��

�
�∈��

f
�
ree
,�và�

UAV
�
� cần� di� chuyển� từ� điểm� xuất� phát��

S
�
�∈��

f
�
ree
�đến�điểm�đích��

�
�∈��

f
�
ree
,�nơi�

�
f
�
ree
� ������là�không�gian�tự�do.

Mục�tiêu�tối�ưu�hóa

Tìm�hai�quỹ�đạo�P
1
�t�� ��x

�
�t���y

�
�t���

và�P
2
�t�� ��x

�
�t���y

�
�t���cho�t�∈�����T��,�với�

T�là�thời�gian�kết�thúc�chung�(hoặc�có�thể�

khác� nhau� và� cần� được� tối� ưu� hóa),� sao�

cho�cực�tiểu�hóa�hàm�chi�phí�tổng��:

�� �wt��T����T�����wo��obstacle�����
�obstacle������w��collision

(1)

trong� đó:�T
�
�và�T

�
� là� thời�gian�bay�

của�UAV
�
�và�UAV

�
� tương�ứng.��

obstacle��
� là�

chi�phí�liên�quan�đến�độ�gần�của�UAV
�
�đến�

các�chướng�ngại�vật,�ví�dụ:

(2)

với�d(P
�
(t),�O)�là�khoảng�cách�từ�vị�

trí� của�UAV
�
� tại� thời� điểm� t� đến� chướng�

ngại� vật� gần� nhất,� và� f
obstacle

� là� một� hàm�

phạt� tăng� khi� khoảng� cách� giảm� xuống�

dưới�một�ngưỡng�an�toàn.

�
collision

� là�chi�phí� liên�quan�đến�khả�

năng�va�chạm�giữa�hai�UAV:

(3)

Với�d(P
�
(t),�P

�
(t))� là�khoảng�cách�

giữa�hai�UAV�tại� thời�điểm� t,� và� f
collision

�

là�một�hàm�phạt�tăng�mạnh�khi�khoảng�

cách� giữa� chúng� nhỏ� hơn�một� ngưỡng�

an� toàn� va� chạm� δ
collision

.�w
t
,� w

o
,� w

�
� là�

các�trọng�số�dương�điều�chỉnh�tầm�quan�

trọng�tương�đối�của�thời�gian�bay,�tránh�

chướng�ngại�vật�và�tránh�va�chạm�giữa�

các�UAV.

Các� ràng� buộc� về� điểm� đầu� và�
điểm�cuối:

P
�
(0)�=�S

�
,�P

�
(T
�
)�=�G

�
(4)

P
�
(0)�=�S

�
,�P

�
(T
�
)�=�G

�
(5)

Ràng�buộc�về�không�gian�tự�do:

P
�
(t)�∈��

f�ree
,�∀t�∈�[0,�T

�
] (6)

P
�
(t)�∈��

f�ree
,�∀t�∈�[0,�T

�
] (7)

Ràng�buộc�về�động�học�(tùy�chọn):

Giới�hạn�về�vận�tốc:����
˙
��t)||�≤�V

max��
�

Giới�hạn�về�gia�tốc:����
�
��t)||�≤��

max��
�

Ràng�buộc�tránh�va�chạm�giữa�UAV:

d(P1(t),�P2(t))�≥�δcollision,��
∀t�∈�[0,�T�]

(8)

Quỹ� đạo� của� mỗi� UAV� được� biểu�

diễn�bằng�một�chuỗi�các�điểm�trung�gian�

(checkpoints)�Qi�=�qi,0,�qi,1,�...,�qi,ki�,�với�

qi,0�=�Si�và�qi,ki�=�Gi.�Đường�đi�giữa�các�

điểm�trung�gian�có�thể�là�các�đoạn�thẳng�

hoặc�các�đường�cong�được�tham�số�hóa.�

Vận�tốc�tại�mỗi�đoạn�đường�cũng�có�thể�là�

một�biến�cần�tối�ưu�hóa.
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Các� thông� số� cơ� bản� được� mô� tả�

trong�Bảng�1.�

3.2.�Thuật�toán�bầy�đàn�(PSO)

Thuật� toán� bao� gồm�một� quần� thể�

(swarm)�mà�mỗi�cá�thể�(particle)�đại�diện�

cho�một� giải� pháp� trong� không� gian� tìm�

kiếm.�Các�cá� thể�di� chuyển� trong�không�

gian�tìm�kiếm�và�cập�nhật�vị�trí�của�chúng�

dựa�trên�định�hướng�là�vị� trí� tốt�nhất�mà�

mỗi� cá� thể� đã� tìm� thấy� (Pbest)� và� vị� trí�

tốt�nhất�mà�quần�thể�đã�tìm�thấy�(Gbest).�

Vị�trí�tốt�nhất�ở�đây�là�vị�trí�thỏa�mãn�tốt�

nhất�điều�kiện�được�đưa�ra�để�tối�ưu�(Jain,�

Saihjpal,� Singh,� &� Singh,� 2022).� Thuật�

toán�PSO�được�mô�tả�dưới�đây:

(i)�Xác�lập�hàm�mục�tiêu�và�các�điều�

kiện� ràng�buộc� (Wang,�Adenutsi,�Zhang,�

Lai�&�Wang,�2021).�Tạo�ra�một�quần�thể�

bao�gồm�một�số�lượng�các�cá�thể�nhất�định�

với�vị�trí�và�tốc�độ�ngẫu�nhiên.

�
�
�t������ ��

�
�t����V

�
�t����� (9)

V
�
�t������ �wV

�
�t�����

�
r
�
�Pbest

�
�t��−�

�
�
�t������

�
r
�
�Gbest�t��−��

�
�t��

(10)

Trong�đó,��
�
,�V

�
� là�vị� trí�và�vận�tốc�

của�các�cá�thể�thứ��;��
�
�và��

�
�là�các�hệ�số�

gia� tốc�dương� (thường�gọi� là�hệ� số�nhận�

thức� và�hệ� số�xã� hội);� r
�
�và� r

�
� là� các� trị�

số� ngẫu� nhiên� được� lấy� từ� phân� bố� đều�

trong�khoảng�������;�w�là�hệ�số�quán�tính;�

Pbest
�
�t��là�vị�trí�tốt�nhất�mà�cá�thể���đã�đạt�

được�cho�đến�thời�điểm�t;�và�Gbest�t��là�vị�

trí�tốt�nhất�mà�bất�kỳ�cá�thể�nào�trong�quần�

thể�đã�đạt�được�cho�đến�thời�điểm�t.

(ii)� Đánh� giá� giá� trị�mục� tiêu� cho�

từng�cá�thể�trong�quần�thể.

(iii)� Đánh�giá�Pbest�và�Gbest.

(iv)� Cập� nhật� vận� tốc� và� vị� trí�

của� mỗi� cá� thể.� Điều� này� thúc� đẩy� sự�

hội� tụ� của�quần� thể�đến�các�vị� trí� tối�ưu��

(Meng,�2022)

(v)� Thực�hiện�các�bước�từ�(i)�đến�

(iii)�cho�đến�khi�thoả�mãn�điều�kiện�dừng�

thuật�toán.

(vi)� Kết�thúc.

3.3.�Thuật�toán�di�truyền�GA

GA� mô� phỏng� quá� trình� chọn� lọc�

tự�nhiên,�các�cá�thể�có�độ�thích�nghi�cao�

hơn�sẽ�có�khả�năng�được�lựa�chọn�để�sinh�

sản,�thông�qua�các�cơ�chế�như�lai�ghép�và�

đột�biến.�Lai�ghép�tạo�ra�thế�hệ�mới,�trong�

khi�đột�biến�thực�hiện�các� thay�đổi�ngẫu�

nhiên�nhằm�duy�trì� sự�đa�dạng�di�truyền�

trong� quần� thể.�Quá� trình�này� lặp� đi� lặp�

lại�qua�nhiều�thế�hệ,�cho�phép�GA�khám�

phá� không�gian�giải�pháp�một�cách�hiệu�

quả� và� cải� thiện� dần� chất� lượng� của�các�

giải�pháp� (Eshelman,� 2018),� giúp� tìm� ra�

các�giải�pháp�tối�ưu�trong�nhiều�lĩnh�vực�

khác�nhau,�từ�kỹ�thuật�đến�khoa�học�máy�

tính�(Lingaraj,�2016).

Trong� bài� toán� này,� chúng� ta� xây�

dựng�1�hàm�như�sau:

(11)

Trong� đó,� T� là� tổng� thời� gian� bay�

của�UAV;��nghịch�đảo�của�tổng�thời�gian,���

nghịch�đảo�của�tổng�năng�lượng�tiêu�thụ;�

e�là�sai�số�giữa�quỹ�đạo�thực�tế�và�quỹ�đạo�

mục�tiêu;�α��β��γ�là�các�trọng�số�điều�chỉnh�

tầm�quan�trọng�của�từng�yếu�tố�trong�hàm�

mục�tiêu.

Hàm�Fitness�này�sẽ�giúp�tối�ưu�hóa�

giữa�việc�nhận�được�nhiều�cá�thể�nhất�và�

dữ�liệu�lớn�nhất�thu�được.�Thuật�toán�GA�

có�thể�được�mô�tả�như�sau:

(i)� Khởi�tạo�các�tham�số�(tỷ�lệ�lai�

ghép,� tỷ�lệ�đột�biến,�số�lượng�cá�thể�ban�
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đầu�trong�quần�thể,�số�thế�hệ,�số�lượng�cá�

thể�để�xây�dựng�quần�thể�tiếp�theo).

(ii)� Tạo�ngẫu�nhiên�cá�thể�ban�đầu�

cho�quần�thể.

(iii)� Tính� toán�mức� độ� thích� nghi�

của�cá�thể�thông�qua�hàm�Fitness.

(iv)� Chọn�những�cá�thể�phù�hợp�từ�

bước�3.

(v)� Lựa�chọn�ngẫu�giữa�các�cặp�cá�

thể�cha�mẹ�dựa�trên�tỷ�lệ�lai�ghép�đã�định�

từ�bước�(i)�và�thực�hiện�quá�trình�lai�ghép�

để�tạo�ra�cá�thể�con�mới.

(vi)� Lựa� chọn� ngẫu� nhiên� các� cá�

thể�cha�mẹ�dựa�trên�tỷ�lệ�đột�biến�đã�định�

từ�bước�(i)�và�thực�hiện�quá�trình�đột�biến�

trên�các�cá�thể�này.

(vii)� Thực� hiện� các� bước� từ� (iii)�

đến� (vi)� cho�đến�khi� thỏa�mãn�điều�kiện�

dừng�của�thuật�toán.

(viii)�Kết�thúc.

3.4.�Thuật�toán�kết�hợp�PSO-GA

Sự� kết� hợp� giữa� thuật� toán� tối� ưu�

hóa�bầy�đàn�(PSO)�và�thuật�toán�di�truyền�

(GA)�mang�lại�nhiều�ưu�điểm�trong�tối�ưu�

hóa.�GA�tăng�cường�khả�năng�khám�phá�

không�gian�nghiệm�và�duy�trì�sự�đa�dạng�

quần�thể,�trong�khi�PSO�đẩy�nhanh�tốc�độ�

hội�tụ�và�khai�thác�hiệu�quả�các�vùng�hứa�

hẹn.� Đặc� biệt,� toán� tử� đột� biến� của� GA�

giúp�thuật� toán� lai� tránh� rơi�vào�các�cực�

trị�cục�bộ,�dẫn�đến�hiệu�suất�tổng�thể�được�

cải�thiện�và�khả�năng�tìm�kiếm�giải�pháp�

tối�ưu�nhanh�hơn�so�với�việc�sử�dụng�từng�

thuật�toán�riêng�lẻ.

Quy� trình� của� thuật� toán� lai� PSO-

GA�bao�gồm�các�bước�sau:

1.�Khởi� tạo� ngẫu� nhiên� các� cá� thể�

(hạt)�với�vị�trí�và�vận�tốc�ban�đầu.

2.� Tính� toán� giá� trị� hàm� mục� tiêu�

cho�mỗi�hạt.

3.�Lưu�trữ�vị�trí�tốt�nhất�cá�nhân�(pi)�

và�vị�trí�tốt�nhất�toàn�cục�(g).

4.�Bắt�đầu�quá�trình�lặp�tối�ưu�hóa:

a.�Cập�nhật�vận�tốc�và�vị�trí�của�hạt�

theo�cơ�chế�PSO.�

b.�Thực� hiện�chọn� lọc,� lai�ghép�và�

đột�biến�theo�cơ�chế�GA�để�tạo�ra�các�hạt�

con�mới.�

c.� Tính� toán� lại� độ� thích� nghi� cho�

các�hạt�mới.�

d.�Cập�nhật�pi�và�g�nếu�có�hạt�mới�

có�độ�thích�nghi�tốt�hơn.�

e.�Kiểm�tra�điều�kiện�dừng.

5.�Kết�thúc.

IV.�Mô�phỏng�và�kết�quả

-�Tối�ưu�hóa�quỹ�đạo�sử�dụng�PSO

Các� tham�số�chi�tiết�của�thuật�toán�

PSO�được�mô�tả�chi�tiết�dưới�Bảng�2.

Bảng�2.�Các�tham�số�của�thuật�toán�PSO

Tham�số Giá�trị
Số�lượng�hạt�(particles) 30
Số�lượng�vòng�lặp�tối�đa 420
Hệ�số�nhận�thức�(PHIP) 2.0
Hệ�số�xã�hội�(PHIG) 2.0
Hệ�số�quán�tính� 0,8-0,3
Kiên�nhẫn�Dừng�sớm 50�vòng�lặp�không�cải�thiện
Ngưỡng�dừng�sớm 4�vòng�lặp�không�cải�thiện�(dừng�hẳn�thuật�toán)
Vận�tốc�tối�đa�cho�mỗi�chiều 12
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(a) (b)

Hình�1.�Kết�quả�mô�phỏng�quỹ�đạo�của�UAV�khi�sử�dụng�thuật�toán�PSO

Trong�đó,�hình�1(a)�với�các�đường�

đa�màu�sắc,�mỗi�màu�tương�ứng�với�một�

lộ�trình�bay�của�UAV.�

Hình�1(a)�biểu�diễn�kết�quả�tại�vòng�

lặp�thứ�130�của�thuật�toán�PSO,�hình�ảnh�

cho�thấy�trạng�thái�khám�phá�tích�cực�của�

quần�thể�30�hạt.�Các�quỹ�đạo�đa�dạng�về�

hình�dáng�hiện�sự�thăm�dò�rộng�rãi�trong�

không�gian� tìm�kiếm�đường�đi� tránh�các�

vật�cản�màu� trắng.�Số�hạt�bắt�đầu�có�xu�

hướng� di� chuyển� theo� các� hành� lang� an�

toàn,� tránh� xa� các� chướng� ngại� vật.� Sự�

phân� tán�của�các�quỹ�đạo�cho� thấy�thuật�

toán� vẫn� đang� trong� giai� đoạn� tìm�kiếm�

các�vùng�hứa�hẹn,�chịu�ảnh�hưởng�bởi�cả�

kinh�nghiệm�cá�nhân�của�từng�hạt�(PHIP�=�

2,0)�và�sự�tương�tác�xã�hội,�học�hỏi�từ�các�

hạt�khác�(PHIG�=�2,0).

Hình�1(b)�biểu�diễn�kết�quả�tối�ưu�mà�

thuật�toán�PSO�đã�tìm�được�sau�quá�trình�

hội�tụ.�Hai�đường�đi�cho�hai�UAV�nổi�bật,�

đảm�bảo�an�toàn�giữa�các�vật�cản,�kết�nối�

điểm�bắt�đầu�và�điểm�kết�thúc.�Thuật�toán�

đã�tối�thiểu�hóa�một�tiêu�chí�liên�quan�đến�

tốc� độ� hoặc� khoảng� cách� di� chuyển,� thể�

hiện�qua�một�quỹ�đạo�trực�quan�không�có�

những�đoạn�di�chuyển�thừa.�Sự�hình�thành�

rõ�ràng�của�2�đường�đi�này�cho�thấy�hiệu�

quả�của�cơ�chế�cập�nhật�vị�trí�của�các�hạt,�

chịu�ảnh�hưởng�bởi�hệ�số�quán�tính�giảm�

dần� (0,8-0,3)� giúp� chuyển� từ� khám� phá�

sang�khai�thác�cục�bộ.�Kết�quả�này�cho�thấy�

thuật� toán�PSO�đã� thành� công� trong�việc�

tìm�ra�một�giải�pháp�khả�thi�và�có�tính�tối�

ưu�cho�bài�toán�tìm�đường�đi�tránh�vật�cản,�

có�thể�sau�khi�đạt�đến�vòng�lặp�tối�đa�hoặc�

thỏa�mãn�điều�kiện�dừng�sớm.

-�Tối�ưu�hóa�quỹ�đạo�sử�dụng�GA

Bảng�3.�Các�tham�số�của�thuật�toán�GA

Tham�số Giá�trị
Kich�thước�quần�thể�GA 20

Tỷ�lệ�lai�ghép� 0,9
Tỷ�lệ�đột�biến� 0,1

Số�vòng�lặp�tối�đa�của�GA 280
Kích�thước�cá�thể��tness�tốt 50

Số�vòng�lặp�không�cải�thiện�(dừng�sớm) 40
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(a) (b)

Hình�2.�Kết�quả�mô�phỏng�quỹ�đạo�của�UAV�khi�sử�dụng�thuật�toán�GA

Trong�đó,�hình�2(a)�với�các�đường�

đa�màu�sắc,�mỗi�màu�tương�ứng�với�một�

lộ�trình�bay�của�UAV.�

Với�hình�2(a)�tại�vòng� lặp�thứ�70�

của� thuật� toán� GA,� hình� ảnh� cho� thấy�

sự�đa�dạng�của�quần�thể�các�cá�thể�đang�

được�đánh�giá.�Với�nhiều�đường�đi�khác�

nhau,� nhưng� phần� lớn� trong� số� đó� vẫn�

còn�cắt�ngang�hoặc�đi�rất�gần�các�vùng�

màu� trắng� biểu� thị� vật� cản.� Điều� này�

phản� ánh� giai� đoạn� ban� đầu� của� thuật�

toán,� nơi� các� giải� pháp� tiềm� năng� vẫn�

đang� được� khám� phá� và� đánh� giá� dựa�

trên�hàm��tness.�Tỷ�lệ�lai�ghép�cao�(0,9)�

cho�thấy� sự�kết�hợp�mạnh�mẽ�giữa�các�

đặc�điểm�của�các�cá�thể�tốt�để�tạo�ra�thế�

hệ�mới,�trong�khi�tỷ�lệ�đột�biến�thấp�hơn�

(0,1)�đảm�bảo�sự�duy�trì�các�đặc�điểm�tốt�

đã�được�chọn�lọc.

Hình�2(b)�biểu�diễn�quỹ�đạo�tối�ưu�

nhất�mà� thuật� toán�GA�đã� tìm� được� sau�

quá� trình�tiến�hóa.�Hai�đường�cam,�xanh�

thể�hiện�một�đường�đi�tối�ưu�của�2�UAV�

an� toàn,� tránh� được� tất� cả� các� vật� cản�

trên� đường�đi� từ�điểm� bắt�đầu�đến�điểm�

kết�thúc,�đảm�bảo�an�toàn�và�hiệu�quả�di�

chuyển�trong�môi�trường�có�vật�cản.Việc�

thuật�toán�dừng�lại�sau�40�vòng�lặp�không�

cải� thiện� (dừng� sớm)� cho� thấy� rằng� sau�

một�số�lượng�lớn�các�thế�hệ�mà�không�có�

sự�cải�thiện�đáng�kể�nào�về��tness�của�cá�

thể� tốt�nhất,� thuật� toán�đã� hội� tụ�về�một�

giải�pháp�tối�ưu�cục�bộ.�

-� Tối� ưu� hóa� quỹ� đạo� sử� dụng�

PSO-GA

Hình�3(a)�minh�họa�trạng� thái� của�

quần�thể�các�hạt�trong�giai�đoạn�PSO�của�

thuật�toán�lai�tại�vòng�lặp�thứ�210.�Sự�đa�

dạng�của�các�quỹ�đạo�ở�giai�đoạn�này�cho�

thấy� thuật�toán�đang� tích� cực�khám�phá�

không�gian�giải�pháp�đa�chiều,�tìm�kiếm�

đồng�thời�các�lộ�trình�khả�thi�cho�cả�hai�

phương�tiện.�Giai�đoạn�PSO�này�đóng�vai�

trò� quan� trọng� trong� việc� nhanh� chóng�

tìm� ra� các� vùng� hứa� hẹn� trong� không�

gian�giải�pháp�phức�tạp,�trước�khi�có�thể�

chuyển�sang�giai�đoạn�GA�và�tối�ưu�hóa�

đồng�thời�đường�đi�cho�cả�hai�UAV,�dẫn�

đến�kết�quả�là�hai�đường�đi�tối�ưu�riêng�

biệt�được�thể�hiện.
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Hình�3(b)�thể�hiện�kết�quả�cuối�cùng�

của�quá�trình�tối�ưu�hóa�đường�đi�cho�hai�

UAV�bằng�thuật�toán�lai�PSO-GA.�Cả�hai�

đường� đi� đều� thể� hiện� quỹ� đạo� an� toàn,�

hoàn�toàn�tránh�được�các�vùng�màu�trắng�

biểu�thị�vật�cản�trong�môi�trường�làm�việc,�

đảm� bảo�an� toàn�và� hiệu�suất� di� chuyển�

cao�nhất�trong�cùng�môi�trường.�Sự�tồn�tại�

của�hai�đường�đi�tối�ưu�riêng�biệt�cho�thấy�

thuật� toán� lai� đã� thành� công� trong� việc�

đồng� thời� tìm�kiếm�và�xác�định�các�giải�

pháp�tốt�nhất�cho�cả�hai�phương�tiện,�đáp�

ứng�được�yêu�cầu�về�quy�hoạch�đường�đi�

đa�tác�nhân.

(a) ������(b)

Hình�3.�Kết�quả�mô�phỏng�quỹ�đạo�của�UAV�khi�sử�dụng�kết�hợp�thuật�toán�lai�PSO-GA

Trong�đó,�hình�3(a)�với�các�đường�

đa�màu�sắc,�mỗi�màu�tương�ứng�với�một�

lộ�trình�bay�của�UAV.�

V.�Kết�luận

Nghiên�cứu�này�giải�quyết�bài�toán�

tối�ưu�hóa�quỹ�đạo�an�toàn�cho�nhiều�UAV�

trong�môi�trường�phức�tạp,�một�thách�thức�

then�chốt�cho�hoạt�động�tự�chủ.�Chúng�tôi�

so� sánh� hiệu� suất� của� ba� thuật� toán� dựa�

trên� quần� thể:� PSO,�GA�và� đề� xuất�một�

thuật�toán�lai�PSO�-�GA�-�UAV�nhằm�tận�

dụng�ưu�điểm�của�cả�hai.�Mục�tiêu�là�tối�

thiểu�hóa�chi�phí�quỹ�đạo�(thời�gian,�năng�

lượng,� độ� dài)� đồng� thời� đảm� bảo� tránh�

chướng�ngại�vật�và�tuân�thủ�các�ràng�buộc�

an� toàn�về�động�học�và�không�gian.�Kết�

quả�mô�phỏng�ban�đầu�với�hai�UAV�thu�

thập�dữ�liệu�trong�môi�trường�có�vật�cản�

cho�thấy�sự�khác�biệt�về�tốc�độ�hội�tụ�và�

khả� năng� khám�phá� giữa� các� thuật� toán.�

PSO�cho�thấy�hội�tụ�nhanh�nhưng�có�thể�

mắc�kẹt�cục�bộ,�GA�khám�phá�không�gian�

rộng� hơn� nhưng� hội� tụ� chậm� hơn,� trong�

khi�PSO�-�GA�-�UAV�bước�đầu�hứa�hẹn�sự�

cân�bằng�hiệu�quả.�Từ�đó�phát�triển�nghiên�

cứu�bao�gồm�mở�rộng�cho�nhiều�UAV�hơn�

nữa,�xử�lý�môi�trường�động,�tích�hợp�dữ�

liệu�cảm�biến,�tối�ưu�hóa�đa�mục�tiêu�và�

ứng�dụng�các�kỹ�thuật�học�máy�ML�để�cải�

thiện�tính�mạnh�mẽ�và�hiệu�quả�của�việc�

lập� kế� hoạch� quỹ� đạo� an� toàn� cho� UAV�

trong�các�ứng�dụng�thực�tế.
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TRAJECTORY�OPTIMIZATION��
UNDER�SAFETY�CONSTRAINTS�USING�PS0�AND�GA

Dao�Thi�Nga�,�Hoang�Trong�Nghia��,�Nguyen�Thi�Thuong�,�Dang�Hoang�Anh���

Do�Phuong�Nhung�,�Quach�Thi�Hanh��

Abstract:�This� study� addresses� the� problem� of� optimizing� safe� UAV� trajectories� in�

complex� environments�with� obstacles� and� safety� constraints.� The� primary� objective� is� to�

determine� an� optimal� trajectory� that� minimizes� �ight� time,� energy� consumption,� or� path�

length�while�ensuring� the�UAV�navigates� safely� from�the�starting�point�to� the�destination,�

avoiding�collisions�and�strictly�adhering�to�constraints�on�velocity,�acceleration,�and�altitude.�

Three� population-based� optimization� methods� are� applied:� Particle� Swarm�Optimization�

(PSO),�Genetic�Algorithm� (GA),� and�a� hybrid�PSO-GA�algorithm� (PSO-GA-UAV).�A�key�

contribution�of� this�research�is�the�proposal�and�development�of� the�PSO-GA-UAV�hybrid�

algorithm,�which�is�expected�to�combine�GA’s�ability�to�explore�a�vast�solution�space�with�

PSO’s�rapid�convergence�to�achieve�superior�optimization�performance.�The�performance�

of� the� three�algorithms�is� evaluated�and�compared�based�on�trajectory�quality,�constraint�

satisfaction,�convergence� speed,�and�stability,�o�ering�a�promising�approach�for� safe�and�

optimal�UAV�trajectory�planning�in�various�real-world�applications�

Keywords:�UAV,�optimization,�Particle�Swarm�Optimization�(PSO),�Genetic�Algorithm�(GA),�

Hybrid�PSO-GA�Algorithm
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